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Abstract The goal of the OSIRIS-REx mission is to return a sample of aster-
oid material from Near-Earth Asteroid (101955) Bennu. The role of the naviga-
tion and flight dynamics team is critical for the spacecraft to execute a precisely
planned sampling maneuver over a specifically-selected landing site. In particular,
the orientation of Bennu needs to be recovered with good accuracy during orbital
operations to contribute as small an error as possible to the landing error bud-
get. Although Bennu is well characterized from Earth-based radar observations,
its orientation dynamics are not sufficiently known to exclude the presence of a
small wobble. To better understand this contingency and evaluate how well the
orientation can be recovered in the presence of a large 1◦ wobble, we conduct a
comprehensive simulation with the NASA GSFC GEODYN orbit determination
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and geodetic parameter estimation software. We describe the dynamic orientation
modeling implemented in GEODYN in support of OSIRIS-REx operations, and
show how both altimetry and imagery data can be used as either undifferenced
(landmark, direct altimetry) or differenced (image crossover, altimetry crossover)
measurements. We find that these two different types of data contribute differently
to the recovery of instrument pointing or planetary orientation. When upweighted,
the absolute measurements help reduce the geolocation errors, despite poorer as-
trometric (inertial) performance. We find that with no wobble present, all the
geolocation requirements are met. While the presence of a large wobble is detri-
mental, the recovery is still reliable thanks to the combined use of altimetry and
imagery data.

Keywords Orbit Determination · Orientation · Dynamics · Asteroid

1 Motivation

In 2011, NASA selected a mission under the New Frontiers program to visit a
near-Earth asteroid and return a pristine regolith sample to Earth (Lauretta et
al., 2016). The Origins, Spectral Interpretation, Resource Identification, Security,
Regolith Explorer, or OSIRIS-REx, is headed to (101955) Bennu under the direc-
tion of Dante Lauretta. The project is managed by NASA Goddard Space Flight
Center (GSFC) in Greenbelt, Maryland and the spacecraft was built by Lockheed
Martin in Denver, Colorado. OSIRIS-REx carries a rich payload of scientific in-
struments, supplemented by a Touch-and-Go (TAG) arm to collect up to 2 kg of
regolith material.

The primary challenge of the mission is to conduct a safe and successful sam-
pling of the surface. In addition to enabling a good scientific understanding of
the small asteroid (∼ 250 m in radius) as a whole to select a landing site, the
payload was designed to provide the data required to ensure TAG success. The
collection of very-high-resolution datasets makes possible the selection of the best
sampling site, both from a science interest standpoint and under strict engineering
safety rules. Underpinning the safe execution of the sampling maneuvers, the dy-
namic environment of Bennu must be characterized precisely and robustly, and the
spacecraft must then be navigated accurately to the TAG site. The OSIRIS-REx
Flight Dynamics Team (FDT) is responsible for the navigation of the spacecraft.
In combination with the Radio Science Working Group and the Altimetry Work-
ing Group, the dynamic environment of Bennu, such as the gravity field, shape,
ephemeris, and orientation of the asteroid, will be estimated in the mission phases
leading up to sampling.

Although no non-principal-axes rotation was identified from repeated ground-
based radar imaging [38], the presence of a wobble could compromise, or at least
complicate, the operation planning. In pre-launch preparations, several simula-
tions were jointly executed by the various groups and institutions forming the
FDT. Here, we present the results of additional simulations performed at NASA
GSFC in order to address the recovery of a wobble on Bennu, and its implica-
tions for the TAG maneuver. We used the GEODYN II orbit determination and



geodetic parameter estimation software developed and maintained at NASA GSFC
[39]. We focused on the orbital configuration expected during the so-called Orbital
Phase B, which is important because it will be the staging orbit for the TAG
maneuver.

The outline of this manuscript is as follows. In Section 2, we describe the asteroid
Bennu and the OSIRIS-REx mission. In Section 3.1, we present important con-
cepts related to planetary orientation definition and representation, introducing
the analytical and dynamical approaches to model it for the purposes of Orbit
Determination (OD). We also discuss the case of Bennu, including the character-
istics of its potential wobble. We then consider practical aspects related to OD,
namely the linearity and stability of orientation estimation, the pertinence of the
dynamical approach, and the limits to the simplicity of actual asteroid rotation.
In Section 4, we explain in detail our Orbit Determination methodology. We in-
troduce the models, measurement types, and simulation capabilities implemented
in our GEODYN that are relevant to this study. We also discuss the strengths
of the image-based and altimetric measurement types used in our simulation. In
Section 5, we focus on the simulation of wobble recovery, building the case with
small side simulations for the approach selected in our comprehensive simulation.
We present the results of this realistic, full-up simulation, particularly regarding
the geolocation performance when different data weights are used. We then dis-
cuss the reasons why it is difficult to recover asteroid orientation with sub-meter
geolocation performance. Finally, we summarize and conclude in Section 6. An
appendix (Section 7) provides details on the computation and estimation of the
planetary orientation parameters through a dynamical approach.

2 Background

2.1 Bennu

The asteroid (101955) Bennu, originally known as 1999RQ36, is a potentially haz-
ardous asteroid whose orbit crosses Earth’s. Considering it has not been visited
by spacecraft yet, numerous physical properties of Bennu are known with good
accuracy. These are based on surveys performed by the large radio telescope at
Arecibo [38]. For the purposes of science preparation and mission planning, the
OSIRIS-REx project established reference parameters informed by existing scien-
tific observations [38].

Bennu is a B-type asteroid with an average radius of ∼ 250 m and an equatorial
radius of ∼ 275 m. Ground-based radar observations were only weakly sensitive
to the polar radius, which is largely unconstrained, save for considerations of ro-
tational stability given the moments of inertia predicted with a uniform density.
The rotation period is well-known, ∼ 4.3 hours. From radar and lightcurve anal-
ysis, no wobble rotation was detected, but the uncertainty in spin axis position is
sufficiently large (± 4◦) that it cannot be excluded presently. The ephemeris of
Bennu is known to a few kilometers [4] and will be refined from spacecraft ranging
data during the OSIRIS-REx mission. The mass of Bennu was obtained from a



novel combination of radio astronomy and infrared observations, by observation
of the Yarkovsky effect and of the surface dielectric properties. The gravitational
parameter (GM, with G the gravitational constant and M the mass) is estimated
to be 5.2 ± 0.9 m3s−2. The low bulk density (ρ ≈ 1260 kg/m3) indicates that
Bennu is likely a rubble-pile with a macro-porosity of ∼ 40%.

Moments of inertia and gravity field models can be prescribed assuming a uni-
form density and a shape, such as best-fit ellipsoid to the radar data. A reference
asteroid shape model consistent with Bennu’s measured properties was developed
by R. Gaskell (Planetary Science Institute) for use during mission planning and
simulations (Figure 1). In particular, this shape is used to simulate the image and
altimetry data acquired by OSIRIS-REx. We derived the inertia tensor for that
complex and realistic artificial body shape (Eq. 1), which will be used in the simu-
lations presented below, under the assumption of uniform density. A more complex
internal structure is of course possible, potentially as a result of the spin history
as studied by [15], but is not directly relevant to our work, given we estimate
the inertia tensor and do not rely on any internal density assumption to obtain
our solution. To assess the possible range of those parameters, we used the shape
uncertainties from [38] and recomputed the inertia tensor. As explained by [38],
because of the viewing geometry during the radar observations, the radar data are
relatively insensitive to 5% errors in polar radius, with values of 10% allowable
within uncertainty. The equatorial radii are better constrained, to about 2% (±10
m). As a result, the recovered shape’s flattening is loosely constrained to 48%. We
created a sample of 3,000 Gaussian-distributed errors on the polar radius with a
standard deviation of 5%, after discarding values that would yield a polar radius
larger than the equatorial radius, which [38] consider unlikely for dynamical sta-
bility reasons. Figure 2 shows the resulting distributions of the variations in polar
radius, and Ixx and Iyy moments of inertia. (Izz does not change with our simple
scaling of the Z coordinates of the shape model vertices.) [38] also discuss a possi-
ble bias in the overall size of Bennu of up to 2%. Because the rotational dynamics
in the torque-free case only depends on the ratios between the moments of inertia
(Section 5.6.1 and Appendix in Section 7), the orientation of Bennu is insensitive
to change in scale (and in bulk density), and we do not consider it further.

2.2 OSIRIS-REx

The OSIRIS-REx spacecraft carries a capable suite of high-resolution instruments
[20] designed to characterize Bennu in unprecedented detail, down to decimeter-
scale globally. Of interest for our study and the geodetic aspect of the mission,
the OSIRIS-REx Laser Altimeter (OLA; [5]) contributed by the Canadian Space
Agency (CSA) will provide ranging information to the surface between 0.04 and
9 km altitude. A scanning mirror and high firing rate allow a large number of
altimetric returns to be collected in short periods and to form three-dimensional
raster images. Two navigation cameras (NavCams) will acquire high-resolution im-
ages of the asteroid in order to support optical navigation (OpNav), necessary to
ensure meeting the position knowledge and prediction requirements during opera-
tions. The lack of an optical bench on OSIRIS-REx means that the pointing of its



radius (m)

Fig. 1 High-resolution artificial shape of Bennu used in the simulation. Created by R. Gaskell,
it is in agreement with the shape derived from ground-based radar data. Mollweide projection
centered on (0◦E,0◦N).
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Fig. 2 Distribution of the relative changes in polar radius and derived moments of inertia Ixx
and Iyy , from the best-fit parameters. The polar radius is consistent with uncertainties in the
radar-derived shape obtained by [38]. The sharp drop-off at larger values is due to dynamical
stability considerations.

high-resolution instruments needs to be calibrated regularly, through estimation
during OD for instance.

After nearly two years of cruise, the OSIRIS-REx spacecraft will reach Bennu
in August 2018. Because of the very weak gravity environment, solar radiation
pressure substantially affects the long-term evolution and stability of spacecraft
orbits around Bennu. A terminator is preferred for mission operations to avoid
unstable trajectories that would be difficult to recover in the case of a prolonged
anomaly (e.g., Scheeres, 2012).

During final approach to Bennu, an initial shape model will be developed. The
subsequent Preliminary Survey Phase will help determine Bennu’s mass at the 1%
level from DSN radio tracking during 3 hyperbolic passes. It will also provide a



75-cm resolution shape model with an accuracy requirement of 1 m. During the
next phase, Orbital A, OSIRIS-REx will be placed in a 1.5-km radius circular
terminator orbit in order to obtain the imagery necessary to construct a global
high-resolution shape model through stereo-photoclinometry [9]. NavCam images
acquired at a cadence of 4 hours will start being used for surface landmark OpNav,
as opposed to stellar OpNav. A detailed survey phase will characterize potential
landing sites, and improve the shape model to 35-cm resolution and accuracy
better than 75 cm. Orbital Phase B will precede reconnaissance passes over four
sites at a range of 225 meters and two TAG passes (one for rehearsal, and one for
actual sample collection). Orbital Phase B is a month-long 1-km radius circular
terminator orbit with one dedicated 9-day period of near-continuous DSN tracking
for radio science and gravity field determination. OLA data are also collected to
construct a shape model independent of those derived from images.

The Orbital Phase B orbit is important for the mission given it is the staging orbit
for critical maneuvers (reconnaissance, TAGs). As such, insight on the quality
of the spacecraft trajectory prediction capability and of the Bennu orientation
estimation are required to ensure successful TAG within 25 meters of a chosen
sampling site [2]. One particularly relevant requirement for the Flight Dynamics
team is that the error of TAG location contributed by the mismodeling of Bennu
orientation should be less than 1 m after 28 hours.

3 Orientation and Wobble

3.1 Planetary Orientation

The transformation between the Bennu-fixed frame and inertial space (defined by
background stars, such as the International Celestial Reference Frame, or ICRF;
[28]) is required for navigation and science. For instance, such rotation matrices
are needed to geolocate the data collected by various instruments at different times
onto Bennu’s surface. With the very high resolution of the datasets to be acquired
by OSIRIS-REx, a good precision (<1 m) is desirable, or even required.

Following IAU convention, a rotation transformation is given by three angles (Fig-
ure 3a): right ascension (RA; α), declination (DEC; δ), and prime meridian lo-
cation (W). At any epoch, the transformation between inertial frame and Bennu
orientation is defined by three such angles. All three can have time variations. The
time history of W is the spin, mainly secular. The time history of α and δ are the
precession and wobble. We do not consider free librations in this work, as they are
unlikely to survive for an extended duration on Bennu.

The J2000 coordinate system is the reference inertial coordinate system in GEO-
DYN. By definition, the Z axis is the pole of the Earth at the J2000 epoch (Jan 1,
2000 at noon). The X-Y plane is perpendicular to the Z axis (e.g., Earth Equator
at J2000 epoch), and the X axis is along the intersection of the X-Y plane and the
plane of the Earth orbit.

To give the orientation of the Bennu pole (Z axis of Bennu) and of the Bennu
Equator with respect to J2000, two angles are required: α (longitude of Bennu
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Fig. 3 (a, left) Schematic description of the IAU definition of the three angles defining body
orientation (Fig. 2 from [1] with permission from author). (b, right) Path of the true pole of
Bennu due to wobble, computed for the nominal inertia tensor and shown in polar stereographic
projection.

Pole at J2000) and δ (latitude of Bennu Pole at J2000). W is the angle between
the Bennu prime meridian and the IAU vector Q, the intersection of Bennu’s
equator and the J2000 X-Y plane. With this third angle, the location of any point
on Bennu’s surface can be related to the inertial J2000 coordinate system.

Though not arbitrary, the time history of those three angles can vary in complexity.
The simplest rotation case corresponds to fixed α and δ values and W linear in
time (constant derivative Ẇ, or spin rate). Major planets are in this state within
good approximation. Longitudinal librations such as that of Mercury [30] can be
represented by an additional series of periodic terms on W. Simple nutation and
precession can also be represented by analytical periodic terms on α and δ.

A wobble is characterized by the three α, δ, and W angles all having non-zero peri-
odic terms. The Earth has a wobble (polar motion), first recognized by Chandler,
and considerable effort is spent monitoring it to provide accurate Earth Orienta-
tion Parameters [43] used in many geodetic applications. A wobble state means
that there is a rotation about all three body-fixed axes, that the position of the
instantaneous spin axis is changing in the Bennu-fixed frame, and that this in-
stantaneous spin axis would trace out an ellipse centered at Bennu’s body-fixed
Z axis with a given period. A one-degree wobble means that the semi-major axis
of the spin axis ellipse is about 1 degree. Although the wobble is driven by the
instantaneous spin axis, one really needs the time series of the three α, δ, and W
angles to relate inertial J2000 and Bennu body-fixed frames.

3.2 How can orientation be represented?

The simplest way to represent orientation is analytical, whereby a series of con-
stant, linear, and period terms of given frequencies are prescribed or determined
for each of the α, δ, and W angles. Each periodic effect is modeled as the sum of



a cosine term and of a sine term, whose amplitudes yield a total amplitude and a
phase. A wobble can be approximated by using such terms of that given wobble
period for both α and δ.

It is also possible to determine these three angles at every time step of a numerical
integration of the differential equations describing the ‘force model’ of the body
dynamics [13]. This dynamical approach requires twelve parameters to derive a
time series of orientation: six for the initial orientation state (α0, δ0, W0, α̇0, δ̇0,
Ẇ0) and six for the inertia tensor Ic (Ixx, Iyy, Izz, Ixy, Ixz, Iyz). This approach
is rather complex to implement in orbit determination software, but affords more
capability and flexibility in case a wobble is actually discovered at Bennu. An Ap-
pendix (Section 7) shows in detail the derivation of the variational equations of the
orientation with respect to the twelve parameters of the initial orientation state.
As part of the OSIRIS-REx mission preparations, we implemented this dynamical
approach into our GEODYN software. In other words, at a given epoch we inter-
polate the α, δ and W parameters as part of a numerical integration that starts
at the same initial epoch as the orbit state. We also interpolate partial derivatives
of the α, δ and W angles with respect to the 6 initial state and the 6 inertia ten-
sor parameters from a numerical integration. These partial derivatives are used to
get the partial derivatives of the measurements with respect to the 6 initial state
and the 6 inertia tensor parameters. Some the particulars of the construction of
measurement partial derivatives will be discussed in Section 4.2.

3.3 Wobble in the case of Bennu

Given current knowledge of Bennu’s bulk density, shape, and orientation (Section
2.1), reasonable estimates for the moments of inertia can be computed and used as
a priori for simulations (Eq. 1). We compute the inertia tensor in the body-fixed
cartesian frame Ic from of polyhedral shape model following [6].

Ic =

 1.752 × 1015 7.596 × 1010 −2.448 × 1011

7.596 × 1010 1.820 × 1015 3.457 × 1011

−2.448 × 1011 3.457 × 1011 1.968 × 1015

 kg.m2 (1)

Note that the off-diagonal elements are several orders of magnitude smaller than
the diagonal elements, indicating that with a uniform density, the radar-derived
shape is nearly in a principal-axes frame. The wobble period can be derived from
the moments of inertia values, analytically with the following formula if Ixx ∼ Iyy
and torque is negligible:

ωwobble =
Ixx − Izz
Ixx

ωspin (2)

Using the average of Ixx and Iyy in Eq. 2, we find a wobble period of approximately
42.1 hours.

To obtain the ‘truth’ state of the 12 parameters for our 1-degree wobble simulation,
we started with the 9 parameters that are better known (Eq. 1, Eq. 3) together with



setting W0 to zero, and then we searched for the α̇0 and δ̇0 parameters that yield
an instantaneous rotation axis with a latitude nearly constant around ∼ 89◦ on
Bennu. The resulting values are in Equation 4. We also found from the numerical
integration that this state (Eq. 1, Eq. 3, Eq. 4 plus W0=0) produces a wobble with
a period of 43.2 hours, close to the expected period from the analytical formula
given in Eq. 2 considering the ∼ 3.7% difference between Ixx and Iyy.

α0 = 86.5◦

δ0 = −65◦

Ẇ0 = 2014◦/day
(3)

α̇0 = 16.28◦/day

δ̇0 = −36.62◦/day
(4)

Figure 3b shows the path of the Bennu spin pole in a north polar stereographic
projection. The deviation from a circular path is due to the non-equal Ixx and Iyy
moments of inertia.

The period of the α, δ and W periodic terms is dictated by the overall spin rate Ẇ
(360 degrees in 4.3 hours) and the the rate of the instantaneous spin axis motion
within Bennu (360 degrees every 43.2 hours). The angular rates are additive, so
in this case the period of the orientation angles is ∼ 3.9 hours. In this 1-degree
wobble example, the amplitudes of the α, δ, and W periodic terms are ∼ 2.1◦,
∼ 0.9◦, and ∼ 1.9◦.

3.4 Practical Considerations for Orbit Determination

One important consideration when performing orbit determination and reducing
tracking data is the linearity and stability of parameter estimation. The Appendix
(Section 7) details the parametrization of the dynamical model, and how it inte-
grates in the orbit determination software. The partial derivatives of the numer-
ically integrated α, δ and W angles with respect to the moment parameters are
themselves numerically integrated. They are nonlinear and starting at about 3 days
after the initial epoch, the partials begin to fail to predict the change in the angles
from a change in the moments. This practically limits the length of estimation
arcs over which data can be analyzed. On the other hand, the analytical approach
requires knowledge of the period to be used for the cosine and sine terms for the
angles. If the period is to be estimated it is also a nonlinear parameter.

Most critically, can the analytical approach correctly represent the wobble of a
complex body with a non-diagonal inertia tensor? We address this question by
performing a small, self-contained simulation over a 3-day time span. We first gen-
erate a truth time series using our dynamical model, and then estimate α, δ, and W
analytical parameters using instantaneous angle measurements (Figure 4). Those
‘measurements’ are values recording the orientation angles themselves at a given
time, and are thus of the realm of thought experiment given no instrument would
ever be able to record those directly. But they represent ‘measurements’ with per-
fect observability and thus yield the most optimistic inversion performance. We



Table 1 RMS and maximum errors in orientation angles (α, δ, W; in degrees) and in position
(at 3 latitudes; in meters) due to the use of an analytical orientation model compared to a
dynamical orientation model.

Errors α (◦) δ (◦) W (◦) λ = 0◦ (m) λ = 45◦ (m) λ = 90◦ (m)
RMS Max. RMS Max. RMS Max. RMS Max. RMS Max. RMS Max.

Solution (0-36 h) 0.181 0.413 0.076 0.175 0.164 0.376 1.07 2.40 0.83 2.19 0.47 0.81
Prediction (36-50 h) 0.200 0.457 0.084 0.186 0.181 0.415 1.20 2.58 0.91 2.29 0.52 0.89
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Fig. 4 (left) Time series of the true and analytically recovered declination orientation angle of
Bennu. (right) Time series of the errors in the recovered values of the three orientation angles.

add no noise to those perfect, ideal measurements of orientation (which again
would never be directly accessible in reality), and do not adjust the wobble fre-
quency, fixed at its truth value. Despite these optimistic assumptions, we find that
the analytical formulation can only approximate the wobble orientation, and yield
a typical geolocation error on the order of one meter (Table 1). A two-day pre-
diction period after the three-day solution period does not show degraded results,
so this illustrates a fundamental inability of the analytical model to capture the
complex wobble dynamics.

In a simulation described further below (see Section 5.3), we will use the 1◦ wobble
case, which is rather large; it is not expected at Bennu, but not excluded from
ground-based data. In principle, the rotation can be perfectly quiet, in the principal
axes frame (where the inertia tensor is diagonal). However, there are practical
limits on how quiet it will appear given the imperfect choice of the Bennu-fixed
reference frame will not be exactly aligned with the principal axes frame. One
interesting question is how small of a wobble one can expect to have to deal with
at Bennu, given our imperfect knowledge of the inertia tensor even after arrival.
Since Bennu is rotating fast (>2000◦/day), there is a limit of how ‘quiet’ (simple)
its rotation will appear in a given Bennu-fixed frame, due to possible off-diagonal
moments of inertia in that frame (e.g., Eq. 1). In a complementary simulation to
that discussed above, we produced a 3-day time series of orientation angles based
on a simple analytical orientation model (constant α, δ, and Ẇ; with no periodic
terms), and we used the dynamical model approach to adjust the initial orientation
state to best match the orientation angle time series, while retaining the moments
fixed to Bennu’s nominal values (Table 1). The adjustment was allowed to converge



Table 2 RMS and maximum errors in geolocated position (at 3 latitudes; in meters) due to
the use of an analytical orientation model compared to a dynamical orientation model, in the
case of a quiet Bennu.

λ = 0◦ λ = 45◦ λ = 90◦

RMS Max. RMS Max. RMS Max.
Geolocation Errors (m) 0.66 0.91 0.51 0.83 0.29 0.30

over three iterations, and resulted in the discrepancies listed in Table 2. This shows
that a geolocation of 0.3-0.6 m at a minimum is expected even on a quiet Bennu
due to the off-diagonal moments of inertia, if analytical parameters are to be
used. Indeed, there are no errors other than how well a set of simple analytical
orientation parameters can match what the dynamical model dictates. If better
position requirement is needed, either additional analytical periodic terms have to
be estimated, or the dynamical model should be used. The periodic parameters
require a period be prescribed, but it is unknown as it depends on the moments
of inertia. On the other hand, with the dynamical model, the moments are very
non-linear and restrict the temporal extent of the estimation period.

4 Orbit Determination

4.1 GEODYN

In support of the OSIRIS-REx mission, we will analyze radio tracking as well
as image and altimetry data with the NASA GSFC GEODYN II program [39].
GEODYN is an orbit determination and geodetic parameter estimation software,
which integrates spacecraft trajectory using a set of force models, models the
observations using a set of measurement models, and performs batch least-squares
to minimize the observation residuals while estimating model parameters. Since
its inception as a tool focused on Earth-orbiting satellites, GEODYN’s capabilities
have grown, in particular for planetary science applications. It benefits from state-
of-the-art models developed for high-accuracy Earth-focused geodetic missions,
and it can now process a large number of measurement types. Figure 5 summarizes
the main force and measurement models implemented in GEODYN that will be
used during the OSIRIS-REx mission.

4.1.1 General Models

GEODYN processes batches of data over independent time periods, called ‘arcs’.
The arc duration is selected by the user, depending on data coverage, spacecraft
maneuvers, and the specific goals of the OD performed. Arcs can be as short as a
few minutes for local gravity studies [27,14] and as long as several weeks if small,
sensitive parameters need to be adjusted [50,29]. The most typical duration in
planetary gravity studies is 1 to 5 days [23,35,36], but analysis of NEAR data was
performed over mission phases that could last several weeks [50,18].



Direct Altimetry
sensitivities: 
- s/c position 
- s/c attitude 
- laser pointing 
- a priori body shape

→ goal is to minimize 
difference between 
measured and 
computed range

The computed range is the round trip distance from the 
satellite at transmit time to the location where the ray 
intersects the DEM back to the satellite at receive time.

Altimetric crossovers
sensitivities: 
- s/c position 
- s/c attitude 
- laser pointing

→ goal is to minimize 
distance between two 
altimetric 3D profiles at 
crossover point

Altimetric constraints
sensitivities: 
- s/c position 
- s/c attitude 
- laser pointing

→ goal is to minimize 
distance between two 
altimetric 3D points 
(in total and radial 
distance)

Image landmark
sensitivities: 
- s/c position 
- s/c attitude 
- camera model 
- a priori landmark 
positions

→ goal is to minimize 
distance between 
vector and landmark 
position

Image constraints
sensitivities: 
- s/c position 
- s/c attitude 
- camera model

→ goal is to minimize 
distance between two 
vectors

Radiometric data
Measurement types: 
- Range observations 
- Doppler observations 
- VLBI observations 
- ΔDOR observations (for cruise/flyby) 

modeling of  corrections for: 
- tropospheric and ionospheric effects 
- station position and Earth orientation 
- spacecraft antenna phase offset

‘Basics’
- time and frame transformation (incl. 
relativity) 
- ground station position (Earth 
orientation, solid tide, ocean loading, 
etc.) 
- central body gravity (spherical 
harmonics, mascons) and tides 
- solar system bodies 
- solar, albedo, and planetary radiation 
- relativistic effects 
- external acceleration (e.g., thermal re-
radiation)

Orientation/Ephemeris
Orientation models: 
- analytical: constant, linear and periodic 
for RA, DEC and W 
-  dynamical: direct integration of  
equations of  motion from initial state 
and moments of  inertia

Ephemeris models: 
- use of  a priori trajectory (e.g.JPL/DE) 
with estimation of  Set III corrections 
- direct integration of  central body 
concurrently with spacecraft trajectory 
(and data analysis)

Fig. 5 Summary of the main models implemented in the GEODYN II software in order to
integrate spacecraft trajectory, model tracking observations, and estimate geophysical param-
eters.

For its integration of spacecraft trajectory over an arc, starting from an initial
state (position and velocity), GEODYN accounts for a variety of forces. Gravita-
tional accelerations are computed using a full spherical harmonics representation
of the gravity field of the orbited body, and using point mass approximation for
third-body perturbations from major planetary bodies and a selectable number of
asteroids. We use the Solar System ephemerides developed at JPL (DE432; [8]).
GEODYN can directly use these ephemeris data, but has the option of numerically
integrating the orbit of Bennu, simultaneously with that of OSIRIS-REx. In this
case, relevant force models are applied to Bennu. From work related to Mercury
[10], we find that the inclusion of major asteroids in the force integration is impor-
tant to accurately reproduce the JPL ephemerides through numerical integration.
As such, we plan on accounting for the largest asteroid perturbations on Bennu
during the OSIRIS-REx mission. Of the 343 asteroids included in DE432, we find
that the bulk of these gravity accelerations will be from (1) Ceres, (4) Vesta, and (2)
Pallas, with additional contribution from (15) Eunomia and (3) Juno (Figure 6).
GEODYN can also model and estimate tidal perturbations, through parameters
such as the Love number k2. While important for studies of Mars [11], the Moon
[25], and Mercury [36], Bennu has too small of a radius for significant tides.

A number of non-conservative forces are typically considered in orbit determi-
nation. Due to the low mass of Bennu, solar radiation pressure is especially im-
portant. The OSIRIS-REx spacecraft is modeled as a series of simple panels with
assigned (and estimable) diffuse and specular reflectivity coefficients, following the
macro-model approach of Marshall and Luthcke (1994). Improved fidelity will be
achieved by modeling the self-shadowing between the plates [33]. During our re-
cent work on the GRAIL mission [25], we also developed a raytracing model to
compute the solar flux received at the spacecraft in orbit around an airless body,
accounting for actual shape and solar limb darkening. Given the terminator orbit
configuration of OSIRIS-REx, no eclipse is expected in the early mission phases,
but we will use this new capability if necessary. Planetary radiation accelerations
due to short-wavelength radiation (‘albedo’) reflected and long-wavelength radi-
ation (‘thermal’) emitted by Bennu are routinely considered in planetary work,
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Fig. 6 Accelerations induced by other asteroids onto Bennu during the OSIRIS-REx mission
span. These perturbations will be accounted for during the integration of Bennu’s ephemeris.

and the near-spherical expected shape of Bennu allows the use of the same models
[21]. Recent, independent developments to better deal with irregular shapes (e.g.,
67P/Churyumov-Gerasimenko) could be leveraged if required.

Spacecraft maneuvers adversely affect orbit reconstruction quality, and are thus
typically avoided in gravity recovery analyses [25,36]. Small thrusting events are
however important to model and reconstruct in the case of the OSIRIS-REx mis-
sion as they are a critical, enabling the low-altitude reconnaissance passes and ul-
timately the TAG sampling. As such, we will use GEODYN’s capability to model
and estimate instantaneous 3-D velocity changes.

To achieve the best orbit reconstruction quality, it is sometimes necessary to in-
clude a set of empirical accelerations in the estimation process, to account for un-
modeled, systematic errors. GEODYN can model constant and once-per-revolution
accelerations in the along-track, cross-track and radial directions of arbitrary dura-
tion, and estimate them iteratively. This was for example successfully used during
LRO and GRAIL data analysis with very different strategies: [35] used a single
along-track acceleration per 2.5-day arc, while [24] estimated sets of 6 acceleration
parameters every 30 minutes for each GRAIL spacecraft. Of course, a smaller num-
ber of empirical accelerations is desirable if predictions are to be computed.

Other force models were developed for high-precision analysis of Earth geodetic
data but are often ignored in planetary work because of their small magnitude
compared to other error sources. In the case of OSIRIS-REx, these are more sig-
nificant because of Bennu’s small mass and may thus need to be considered during
proximity operations. Forces due to thermal anisotropy of the spacecraft and due
to antenna radiation recoil have been modeled for the TOPEX-Poseidon mission
[31]. For OSIRIS-REx, we will use spacecraft telemetry of temperature sensors and
modeling external to GEODYN to build time series of spacecraft-fixed acceleration
perturbations that GEODYN will during integration.



As described in Section 3.2, the orientation of Bennu can be modeled and esti-
mated using either an analytical approach or a dynamical numerical model. The
orientation is important as it drives the computation of gravity field accelerations
and planetary thermal radiation. In support for the OSIRIS-REx mission, the dy-
namical orientation model described above was implemented and tested, including
the ability to estimate any or all of the twelve orientation parameters, through the
computation of up to 144 variational equations (see Appendix, Section 7).

During orbit integration, GEODYN uses measurement models to compute the
expected values of the considered observables. Reproducing the measurement ge-
ometry at appropriate times, GEODYN computes the expected values based on
the current trajectory and model parameters. Many measurement types are im-
plemented in GEODYN, which enables such modeling in a wide variety of geome-
tries. In addition to geometrical configuration, observables rely on measurement
corrections, that for example account for the effects of tropospheric delays due
to particular conditions (temperature, pressure, water vapor partial pressure) at
the time of measurements. We refer the reader to [22] for a detailed discussion
of measurement correction models associated with atmospheric, tidal movement,
station position, and relativistic effects.

4.1.2 Radio Measurements

The primary data used in planetary geodesy studies are the radio tracking Doppler
and Range measurements acquired by the ground-based Deep Space Network
(DSN, [48]) using the spacecraft telecommunication system. Given the obvious
need to retrieve telemetry and scientific data to make a planetary mission success-
ful, relatively little hardware modifications are necessary to enable a high-quality
geodetic investigation, and such investigations are typically part of flown planetary
missions.

The radio wavelength used to communicate is important due to its associated in-
trinsic noise level and the expected noise level due to solar plasma (currently not
correctable due to their stochastic nature and lack of data to precisely model the
solar corona). While early spacecraft hardware operated in the S-band (∼2.2GHz),
recent planetary missions have operated in the X-band (∼8GHz) which also pro-
vides a benefit in terms of data bandwidth. OSIRIS-REx operates in the X-band.
In the future, tracking at Ka-band (∼32GHz) is expected to further enhance the
suite of possible scientific objectives (e.g., [16,17]).

GEODYN can analyze unramped and ramped Range and Doppler radiometric
data, and this capability has been demonstrated and exercised numerous times
[35,36,22,23,46]. Tropospheric and ionospheric corrections can be applied using a
variety of models and zenith mapping functions.

4.1.3 Altimetry Measurements

The GEODYN II software was essential to the success of the altimetric inves-
tigations by the Mars Orbiter Laser Altimeter (MOLA; [44]) and by the Lunar



Orbiter Laser Altimeter (LOLA; [45,47]), as the MGS and LRO trajectories were
reconstructed with GEODYN. In addition, the altimetric ranges obtained by these
instruments were folded in the orbit determination process, in the form of altimet-
ric crossovers. Knowing that the planetary radius at groundtrack intersections
did not change (except for small deformations due to tides), these measurements
were used as constraints on the spacecraft orbit and altimeter pointing. While this
canonical crossover measurement type is well-adapted to large planetary bodies
and narrow-groundtrack altimeters (it was also used by [46] on MESSENGER to
validate early gravity field solutions), the OSIRIS-REx laser altimeter operates
sufficiently differently (e.g. raster scanning at close proximity) that it is not prac-
tical at Bennu. Instead, we intend to use the OLA altimetry data in two different
ways.

Given prior information on planetary shape, the range to the surface as measured
by OLA can be directly compared to a prediction using that shape and the space-
craft position and attitude. This simple measurement, called ‘direct altimetry’,
was key to calibrate the pointing of the GLAS instrument onboard ICESat. [26]
proposed and leveraged large off-nadir slews while flying over oceans to estimate
pointing parameters, which were then used to improve the geolocation of returns
over the polar regions. The topography of the oceans was relatively well-known
as it follows the geoid, and small errors, due to waves for example, were found
not to affect the ability of the GLAS data nor contribute to the pointing recov-
ery. We can extend this technique to short-scale, high-resolution targets. Bennu’s
shape will be known from image-based and from OLA altimetry models built from
multiple acquisitions. We can use these shape models as a basemap to match in-
dividual altimetric tracks during orbit determination, adjusting both spacecraft
position and pointing to minimize the discrepancies.

In section 5.3 we will discuss in more detail the estimation of pointing parame-
ters for altimetry. For altimetry it is necessary to provide two estimated pointing
correction angles: one in roll and the other in pitch. Camera data also require
pointing correction angles and require an additional angle in yaw. As it turns out,
the OLA scan naturally acquires data over a range of pointing angles that are
phased in roll and pitch, much like the designed calibration maneuvers of [19].
Without a mechanism such as OLA’s scanning mirror, the calibration maneuvers
are typically spacecraft activities designed to acquire data over different pointing
conditions so that position and pointing errors can be distinguished. We note that
calibration maneuvers are not required for the camera data because many land-
marks are visible in each image and in effect provide enough attitude information
through parallax.

To take full advantage of the two-dimensional nature of the OLA altimetric raster
scans, we will also use a crossover-like measurement recently implemented in GEO-
DYN. Described in [34], the so-called ‘swath crossovers’ rely on the prior adjust-
ment of two scans to each other. This relative positioning provides strong 3-D
constraints between geolocated Cartesian coordinates that can be passed on to
GEODYN to be replicated during orbit determination. One key aspect of this dif-
ferenced measurement type compared to the direct altimetry is that it does not
require nor depend on an a priori shape, and is insensitive to absolute pointing
errors.



4.1.4 Image Measurements

In preparation for the LRO and Dawn missions, a capability to process image data
was implemented in GEODYN.

The traditional image landmark observables (e.g., [19]) are now available in GEO-
DYN. Surface features need to first be recognized and matched across multiple,
overlapping images. Their Bennu-fixed coordinates are typically obtained exter-
nally (through stereo-photoclinometry, SPC, or stereo-photogrammetry, SPG) and
used as a priori. The pixel locations of these landmarks within the image col-
lection are the geodetic data to be analyzed in GEODYN. A camera model is
required to translate from vectors from landmark to spacecraft in the spacecraft-
frame Cartesian space into camera pixel-space. The landmark positions, camera
model parameters (e.g., focal length, distortion), and camera pointing biases can
be estimated simultaneously by GEODYN, along with all other normal model pa-
rameters. This ‘image landmark’ measurement is an absolute measurement, as it
leverages the observation at one epoch to constrain spacecraft position and point-
ing, given landmark position and Bennu orientation.

In contrast, another image-based measurement type developed by our group [3] is
the ‘image crossover’ measurement. Akin to altimetric crossovers (e.g., [40]), it is a
differenced measurement which in essence dictates that vectors pointing from the
spacecraft through identified camera pixels should intersect in the Bennu-fixed
frame. The camera model is now used to translate the pixel coordinates into a
vector in physical space (the opposite of what is done for landmarks). Intuitively
simple, this geodetic constraint is in some sense weaker than the previous land-
mark measurement, because a larger number of possible spacecraft trajectory and
pointing solutions allow the rays to intersect. However, it does not rely on any
prior information about the landmark position, and is insensitive to common-
mode pointing biases. The link between spacecraft states at distant times can also
help the solution, in particular of the orientation because well-behaved orbits can
benefit other time periods with otherwise poorer knowledge. Finally, the creation
of those measurements simply requires image processing tools to match feature
pairs, which can be rapidly applied to new sets of images, in contrast to requiring
the more involved SPC or SPG processing to create landmark data.

4.1.5 Simulation Capabilities

While GEODYN is primarily designed to be used to process tracking data ac-
quired by active flight missions, it provides the option to simulate all available
measurement types. Comprehensive full simulations can be built, using the same
measurement and force modeling capabilities. Once the artificial data are created
and noise added, realistic errors and perturbations can be imposed on the initial
state and a priori parameter values. GEODYN is then used to perform the normal
orbit determination process, and both the actual errors in the recovered values
and their formal uncertainties can give insight into the quality of the recovery and
the potential presence of systematic errors. Of the many simulation efforts with



GEODYN, several analyzed altimetry data to recover orbital and geophysical pa-
rameters. [49] investigated the use of altimetric crossovers in orbit around Europa
to recover tidal parameters (the Love numbers h2 and k2) to constrain the ice shell
thickness. [41] presented simulation results using multi-beam crossovers enabled
by the LOLA five-beam pattern. [37] revisited the subject of tides at Europa, using
the data acquired by a long-range altimeter during a multiple-flyby mission. The
OSIRIS-REx mission, and future mission concepts, can benefit from the detailed
simulations enabled by GEODYN, as will be demonstrated in Section 5.

4.2 Observation Types and Associated Measurement Partial Derivatives for
Orientation Recovery

4.2.1 Observation Types

Although all observations are tied to Bennu’s orientation, the strength of the vari-
ous observation types described above varies. Bennu’s orientation is a weak factor
in the force model of the OSIRIS-REx spacecraft. Indeed, although the OSIRIS-
REx trajectory is sensitive to gravity and although the orientation of the gravity
field is tied to Bennu’s orientation, the orientation-trajectory link is weak because
Bennu’s gravity field is weak. This orientation-trajectory link affects all data types,
but some measurements are vastly more sensitive than others to the orientation.
In addition to the limitations imposed by weak gravity, this link is only an indirect
effect in that it does not provide information about the orientation of Bennu at
any particular epoch. The orientation-trajectory link is an integrated effect. Only
measurements that observe surface features can provide an an additional direct or
geometric effect. Measurements with the direct effect can provide a detailed time
history of orientation at individual epochs.

An interesting illustration of this fact can be drawn from our own experience during
a verification and validation simulation effort for OSIRIS-REx (see Section 5.2).
The artificial observations for radiometric and landmark data were created in sep-
arate runs. By mistake, significantly different orientation models were used. When
reducing the landmark data, using the wrong orientation model produce very large
residuals, indicating a clear mismatch between trajectory and measurement mod-
eling. However, this was barely noticeable in the Doppler data residuals, because
the trajectory changes introduced by integrating the gravitational accelerations
computed from the incorrect asteroid frame were so small and did not lead to
large deviations from the true, self-consistent trajectory.

Camera and altimeter measurements have the direct geometric effect described
above as well as the indirect trajectory effect. These measurement types directly
observe surface features. In terms of camera-derived observations, a landmark
measurement is thus very sensitive to the instantaneous α, δ, and W. Despite
an equally strong geometric effect, landmark crossovers, because of their differ-
ential nature, are not sensitive to instantaneous values, but rather to orientation
changes between the two measurement epochs of the crossover pair. Around small
bodies, the geometry of the observation pairs is typically quite different, so in



practice the landmark crossovers are sensitive to the instantaneous orientation at
both image epochs. This situation is mirrored for the altimetric data: direct al-
timetry is sensitive to instantaneous orientation, while altimetric crossovers are
mostly sensitive to relative changes in orientation. We note here, in anticipation of
Section 5.4, that undifferenced measurements are critical to estimate the pointing
of the camera and altimeter. The differenced (crossover) measurements are not
sensitive to absolute pointing, only relative pointing changes. In order to estimate
Bennu’s orientation while simultaneously estimating instrument pointing biases, a
combination of absolute and differential measurements is helpful.

The radio tracking data, acquired from Earth-based stations with no direct tie to
Bennu’s surface, have only the indirect trajectory effect. However, the DSN data
are still important to conduct orbit determination of OSIRIS-REx around Bennu.
Indeed, this lack of geometric effect is valuable for orbit stabilization in the inertial
frame. The camera and altimeter data have no link to the inertial frame. Without
the DSN data it would be difficult if not impossible to get the correct absolute
orientation of Bennu.

4.2.2 Associated Measurement Partial Derivatives

As was discussed in the previous section, all tracking measurement types associ-
ated with OSIRIS-REx are sensitive to Bennu’s orientation through the indirect
link provided by gravity into the trajectory of the OSIRIS-REx spacecraft. In
other words, the 12 initial state parameters of Bennu orientation are force model
parameters of the OSIRIS-Rex trajectory. As force model parameters, the partial
derivatives of the spacecraft position with respect to the 12 orientation parameters
are numerically integrated along with other force model parameters (like gravity
coefficients) in the OSIRIS-REx variational equations. The variational equations
for the OSIRIS-REx spacecraft require that the explicit partial derivatives of space-
craft acceleration with respect to each force model parameter be computed at each
integration step. In the case of the 12 Bennu orientation parameters, this requires
output from the separate set of variational equations that have been added to
GEODYN for the orientation numerical integration. The inclusion of the Bennu
orientation parameters as spacecraft force model parameters required a double set
of linked variational equations.

For each tracking measurement type, the measurement partials with respect to
the orientation parameters has a component coming from the partial derivative
of the measurement with respect to the spacecraft position chained together with
the partial (discussed just above) of the spacecraft position with respect to the
orientation parameters. For DSN data this is the only component. For camera
and altimeter data there is a second and stronger direct effect component of the
measurement partial derivative with respect to orientation parameters. For this
second component, we compute the partial derivative of the measurement with
respect to the α, δ and W angles of Bennu at the measurement epoch. This is
in turn chained with the partial derivatives of the three angles orientation angles
with respect to the initial state parameters (from the orientation variational equa-
tions). For camera and altimeter measurements the two components are added
together.



5 Simulation of Wobble Recovery

5.1 Sensitivity and Linearity of the Orientation Parameters

As noted in Section 3.4, one complication of using the dynamical approach is that
the time history of orientation is highly non-linear with respect to the 6 moment
of inertia parameters.

We performed tests estimating the initial state from the truth time series when
various moments are in error. We first generated a ‘truth orientation’ time history
(series of α, δ, and W) for 7 days based on the a priori parameters shown in
Eq. 2. We then estimated the moments of inertia from these angles, starting from
perturbed moment values but a correct initial orientation state. As before, this
is an optimistic case given that no OD filter noise is present in the estimation
and that the measurements are ‘perfect’ (direct observations of the orientation
angles).

We find that if the starting off-diagonal moments for Bennu are ‘order of magni-
tude’ correct, the wobble recovery is relatively insensitive to off-diagonal moment
errors. If the error in the diagonal moments is less than ∼3%, the orientation wob-
ble state can be recovered. From Fig. 2c, it appears the current uncertainties in
shape are sufficiently small to fulfill that criterion.

In reality, the initial state will not be known, and we will need to estimate the
initial state and the diagonal moments simultaneously. In a gravitational torque-
free case, which is the case at Bennu, the three diagonal moments, Ixx, Iyy, and
Izz, cannot be estimated independently, and we need to add a constraint, such as
fixing I2xx + I2yy + I2zz to an a priori value (which is equivalent to constraining
the total mass). Tests show that the Ixx, Iyy, and Izz parameters are highly non-
linear and difficult to estimate robustly when the estimation period lengthens.
Solutions much longer than three days decay due to the non-linearity of Ixx, Iyy,
and Izz. Longer solutions are only possible if these parameters are known and held
fixed.

5.2 Simulation Setup

The simulation was based on the Orbit Determination Thread Test 3 (ODTT3)
simulation effort conducted internally by the OSIRIS-REx Flight Dynamics Team
in early 2015. It focused on the Orbital Phase B mission phase. Extensive details on
the assumptions, methodology, and results are presented in [12]. Here, we adopted
the general setup, such as orbital configuration, observation geometry, and data
coverage, but we re-simulated the observations with different assumptions, in par-
ticular of the orientation history of Bennu. In the 4-day analysis period, the first
three days contain various radio tracking passes, image acquisitions and altimetry
scans. The spacecraft trajectory is integrated forward over the last day to allow
orbit prediction quality assessment. Of note, the arc contains 42 images and 42
OLA scans. Those scans follow the planned raster scan pattern for Orbital Phase



B, but were downsampled significantly (by a factor of 25) for computational rea-
sons. After three days of data collection, differenced measurements are available
thanks to overlaps between images and between OLA scans.

5.3 Separability of Orientation and Instrument Pointing Errors

In order to model the camera and altimeter observations and use them during
orbit determination, pointing knowledge to relate instrument reference frame to
spacecraft body reference frame to planet-fixed reference frame is required. The
high-resolution instruments onboard OSIRIS-REx will require accurate pointing
knowledge to contribute to the geodetic estimation, beyond what is possible to
achieve with onboard sensors. That is in part because of the lack of an optical
bench on OSIRIS-REx, meaning that the transformation to inertial provided by
the star trackers cannot be rigidly tied to the instrument orientation. As such, we
anticipate pointing errors would need to be estimated at each observation epoch.
Can the data support this approach? Multiple landmark observations are expected
to be available within each camera image, which should be sufficient for epoch-by-
epoch estimation. For the purpose of pointing correction, we consider that an entire
OLA 150-second scan can be corrected by a single pair of pointing parameters.
The OLA scans provide a strong geometry which allows scan-by-scan pointing
estimates. Within each 150-s scan, the OLA pointing is stable to 30 arcseconds,
which is tolerable in the 1-km radius orbit (∼10 cm).

Nevertheless, one difficulty that comes with estimating pointing parameters at
every observation epoch is that these camera and altimeter parameters are highly
correlated with the Bennu orientation parameters.

We performed a small simulation to test the separability of epoch by epoch pointing
parameter and orientation parameters. We modeled the asteroid orientation with
the analytical model using periodic terms with an amplitude of one degree in both
α and δ. Although these amplitudes do not correspond to a wobble, they suffice
to check the separability of orientation and attitude. We simulated landmark and
altimeter range observations over 4.5 days, based on the ODTT3 setup described
above. Our truth model includes periodic variations in α, δ, W to produce a
1◦ ‘wobble’. We first simulated the observations: 293 landmarks over 42 images;
258,871 altimetric range observations, spread over 42 OLA scans (150 seconds each;
the anticipated data was decimated by a factor of 25). To understand the intrinsic
weakness of estimating either or both of the pointing and orientation parameters,
the observations are free of noise and of initial pointing error, and we used the
simulated data to test orientation recovery under perfect conditions, with no force
or measurement model errors. All parameters start at their truth values, except
for the α, δ and W periodic terms (that can describe wobble-like dynamics) which
are set to zero initially. The initial residual RMS, without the periodic terms, is
53 cm for the direct altimetry data, and 7.7 pixels for the image landmarks. We
conducted separate simulations with either altimetric or landmark data, and our
simulation results are very similar for each measurement type.

In a first test, we estimated pointing parameters at the 42 epochs, despite the
fact that no pointing error were present. We adjusted either three angles for the



camera observations (roll, pitch, and yaw) or two angles for the altimeter obser-
vations (roll and pitch). Such an inversion reduces the altimeter range RMS from
53 cm to 23 cm, and the landmark data RMS from 7.7 pixels down to 1.5 pixels.
This means that instrument pointing parameters are highly correlated with ori-
entation parameters, and can account for much of the signal that a wobble would
create.

In our second test, we held the instrument pointing parameters to the values
derived above, and performed a second inversion of the orientation periodic terms
alone. The recovered ‘wobble’ amplitude was greatly reduced compared to the full,
true amplitude. This clearly demonstrates that one should not estimate instrument
pointing and orientation parameters separately (sequentially), because of their
high correlation.

In our third test, starting from no periodic terms (zero a priori), we estimated both
the orientation periodic terms and the instrument pointing biases simultaneously.
We find that in this case, the orientation periodic terms can be estimated almost
perfectly. Although the recovery was near perfect, we emphasize that there were
no systematic or random errors in this simulation. But this shows that in principle,
epoch-by-epoch pointing parameter estimation is possible and not detrimental to
the recovery of body orientation.

5.4 Full Simulation with Systematic Errors

The simulations described above had no error sources (only the co-estimation of
highly correlated parameters). Here, we perform a full simulation with system-
atic errors to represent a realistic situation for OSIRIS-REx during Orbital Phase
B.

This simulation scenario is also based on ODTT3, but with new simulated data.
We created artificial data over a span of 4.5 days, based on a set of truth tra-
jectory and models. The 1-degree wobble discussed in Section 3.3 was considered.
All measurement types described in Section 4.1 that we anticipate to be collected
during Orbital Phase B were included, at a realistic cadence allowing for DSN
tracking periods and camera and altimeter data acquisition periods. The result-
ing dataset includes: 816 landmark observations (at 42 epochs as previously); 731
landmark crossovers; 1914 DSN Doppler observations; 140 DSN Range observa-
tions over two passes; 275,562 altimeter ranges collected over 42 OLA scans; 27
altimeter patch crossovers obtained from overlapping OLA scan pairs, each with
independent horizontal and radial constraints.

We inserted systematic errors into this simulation, similar to those used in ODDT3
[12]. Several gravity coefficients are set significantly away from truth.Panel reflec-
tivities (related to solar radiation) are also perturbed. A 1 m-level Gaussian er-
ror was added to the landmark coordinates. The OLA scans were given periodic
roll and pitch errors (with a half-scan period), with an amplitude of 30 arcsec-
onds.

These errors make for a realistic simulation with large systematic effects, far from
an optimistic case. To illustrate this, we computed the residuals obtained from



Table 3 Effect of systematic errors introduced to the gravity field coefficients, landmark
coordinates, and altimeter pointing. The pre-fit column indicates the residual RMS when all
other parameters are set to true values. The post-fit column shows the improvements due to
the sole adjustment of the spacecraft initial state.

Type Number of Pre-fit Post-fit RMS Unit
Observations RMS

Landmark 816 37.4 1.71 pixel

Landmark Crossover 731 13.9 0.54 m

DSN Range 140 52.5 1.92 RU

DSN Doppler 1914 0.046 0.10 Hz

Altimeter Range 275562 4.78 0.00 m

Altimeter Crossover 27 21.1 11.48 m
(Horizontal)

Altimeter Crossover 27 4.1 2.70 m
(Vertical)

Table 4 Residual RMS of the various measurement types used in the simulation, without
any error on the orientation of Bennu. The residuals converge to near-noise level after orbit
determination is performed.

Type Pre-fit RMS Post-fit RMS Unit

Landmark 37.4 4.8 pixel

Landmark Crossover 13.9 0.5 m

DSN Range 52.5 1.9 Range Unit[7]

DSN Doppler 0.046 0.003 Hz

Altimeter Range 4.78 0.69 m

Altimeter Crossover (Horizontal) 21.16 2.87 m

Altimeter Crossover (Vertical) 4.13 0.67 m

an initial run with only these systematic errors, all other parameters being set to
truth (including initial spacecraft state). We then performed an OD solution, only
letting the initial spacecraft state adjust. The results, shown in Table 3, show that
the initial state itself can account for a large part of the large initial residuals,
but that large systematic signatures remain, particularly for some measurement
types (e.g., landmarks and altimetric constraints). This also shows why the use of
a diversity of measurements is helpful to avoid systematic effects from affecting
the estimation.

We then checked the effect of these systematic errors on the data, by starting with
the true Bennu orientation values, and performing an orbit solution during which
we estimated various parameters: initial state, solar radiation scale factor, pointing
error parameters, and range biases per pass. Table 4 shows the pre- and post-fit
residual RMS values, and indicates the level to which the orbit state adjustment
can accommodate the systematic errors arising from holding certain parameters
to values different from the truth.

We also imposed errors on the initial orientation state: α̇0 and δ̇0 were set to zero
(no a priori wobble), and we imposed an initial error on Iyy of 3%. We estimated



Table 5 Summary of the tracking data used in the simulation. All available measurement
types are used. Two cases for the weight given to the landmarks are shown. The downweighting
of the landmark data does not significantly affect their level of fit, but improves the consistency,
with the differential measurements in particular (landmark and altimeter crossovers).

Type Number of Pre-fit Post-fit RMS Post-fit RMS Unit
Observations RMS (downweighted (upweighted

landmarks) landmarks)

Landmark 555 282.2 4.9 4.8 pixel

Landmark Crossover 472 50.2 0.3 0.4 m

DSN Range 70 41.3 1.2 3.8 RU

DSN Doppler 1064 0.029 0.002 0.006 Hz

Altimeter Range 190269 6.64 0.60 0.85 m

Altimeter Crossover 6 37.0 1.56 2.16 m
(Horizontal)

Altimeter Crossover 6 2.68 0.27 0.51 m
(Vertical)

all of the normal arc parameters as above, plus 9 Bennu orientation parameters
(initial state orientation and the three diagonal moments Ixx, Iyy, Izz). Because
we estimate the moments, the data span needed to be short, and we chose a
length of 3 days. The number of available measurements is reduced from those
originally simulated. Differenced measurements can reduce substantially, because
they intrinsically require a long timespan to occur (and their occurrence tends
to grow quadratically with time). In particular, only six OLA patch crossovers
are available within a 3-day period, compared to 27 over the full 4.5-day span. A
2-day arc duration would be more desirable due to non-linearity issues, but arcs
shorter than 3 days would not contain any OLA patch crossover, an important
asset.

Table 5 and 6 present the results of two simulations, identical except for the
weighting of the landmark data. Observation fits are generally good, which in-
dicates orbit convergence. Many geodetic parameters are recovered well. For in-
stance, the three diagonal moments are estimated with an accuracy of ∼1%. As in
Section 3.4, we transform these angle errors into geolocation errors on the ground,
which is most relevant to the TAG accuracy requirement for OSIRIS-REx. Table 7
shows that geolocation errors are nearly always smaller than 1 m in the 3-day re-
construction period. The method of computing geolocation errors will be discussed
in the next section. The prediction performance was computed over the 1.5 days
following data cut-off. In both landmark weight cases, it remains below 0.9 m in
the RMS sense in the equatorial region (Table 7), which is on the same order as
the TAG accuracy requirement (1 m, [2]). A large Bennu wobble would thus con-
tribute a notable part of the error budget. In the quiet Bennu case, without any
large wobble, the maximum geolocation error can remain below 1 m RMS globally
when landmarks are upweighted. However, we note that not considering a wobble
would yield much poorer results. Indeed, reproducing the simulation using the an-
alytical approach without periodic terms, we obtain geolocation errors of ∼ 4 m
and ∼ 5m RMS in the reconstruction and prediction periods, respectively.



Table 6 Results of the estimation of the diagonal moments of inertia in two simulation cases.

Parameter Unit Truth a priori Downweighted landmarks Upweighted landmarks
(×1015) Recovered Error Error (%) Recovered Error Error (%)

Ixx kg.m2 1.752 truth 1.7495 0.003 0.17 1.7700 0.018 1.03
Iyy kg.m2 1.820 1.872 1.8518 0.032 1.75 1.8363 0.016 0.88
Izz kg.m2 1.968 truth 1.9897 0.022 1.12 1.9858 0.018 0.91

Table 7 Simulated performance in geolocation after estimation of the orientation of Bennu,
in the case of a large 1◦ wobble and in the case of a quiet Bennu. Results for each case are
given for two different landmark data weights.

Geolocation Errors (m) λ = 0 − 30◦ λ = 30 − 60◦ λ = 60 − 90◦

RMS Max. RMS Max. RMS Max.

1
◦

w
o
b

b
le

Initial (0-72 h) 91.80 169.74 65.36 138.55 29.17 77.33

Initial (72-108 h) 198.26 230.86 149.11 206.15 62.47 130.66

Solution (0-72 h) 0.37 0.84 0.44 1.01 0.58 1.12
(downweighted)

Prediction (72-108 h) 0.89 1.89 1.29 1.96 1.51 2.33
(downweighted)

Solution (0-72 h) 0.33 0.61 0.42 0.76 0.51 1.00
(upweighted)

Prediction (72-108 h) 0.85 1.70 1.16 1.98 1.37 1.98
(upweighted)

q
u

ie
t

B
en

n
u

Solution (0-72 h) 0.44 0.84 0.44 0.77 0.40 0.65
(downweighted)

Prediction (72-108 h) 0.74 1.16 0.62 1.12 0.46 0.80
(downweighted)

Solution (0-72 h) 0.38 0.63 0.44 0.64 0.47 0.67
(upweighted)

Prediction (72-108 h) 0.70 0.98 0.59 0.89 0.43 0.73
(upweighted)

5.5 Implications for Spin State Recovery and Geolocation Accuracy

As indicated in Tables 5-7, we performed the simulation using two different weight-
ing schemes for the landmark data. In our original simulation, the landmark data
were weighted close to their noise level (‘upweighted’ case), around 0.1 pixel. The
data fits were good (Table 4), but when assessing the errors in orientation param-
eters, the time series (Figure 7b) revealed relatively large biases for α and W com-
pared to the truth values. We performed an alternate simulation with lower weights
for the landmark data (‘downweighted’ case). This downweighting, by a factor of
10 (to 1.0 pixel), significantly reduced the mean in the angular errors (Figure 7a).



Each solution has advantageous characteristics that can be exploited depending
on the application. The downweighted landmark solution has lower overall angular
errors (good for astrometry), whereas the upweighted landmark solution has much
smaller angular variations about the mean errors. It turns out that for the purposes
of geolocation, mean errors are not as detrimental as departures from mean errors.
The better orientation recovery accuracy when downweighting the landmark data
is an important finding, which we will use to inform our work during the actual
OSIRIS-REx mission.

When computing geolocation errors from a set of spin state angular errors, it is
tempting to simply rotate a set of body fixed coordinates on the surface of the
asteroid to inertial coordinates. This would be done with the ‘truth’ angles and
then again using the solution angles that are in error. The two sets of inertial
coordinates would be compared. However, this approach only considers spin state
error and neglects the contribution of orbit error to geolocation error. During the
OSIRIS-REx mission, we will be computing orbits using our estimated spin states.
The spin state error will contribute to orbit error which will in turn have an effect
on geolocation error. The geolocation errors reported in Table 7 were computed in
the following manner. The ‘truth’ orbit of the simulation was rotated to body fixed
using the ‘truth’ spin state. The latitude and longitude of each point along the
trajectory was computed and then located on the asteroid surface. This represents
the ‘truth’ geolocation. The same tracking data used to estimate the spin state
was used together with the estimated spin state to make an orbit solution. The
points along the new orbit solution were geolocate in the same way as the ‘truth’
geolocation, except that the estimated spin state was used in the rotations. This
provided the set of geolocated points in error that were compared to the ‘truth’
geolocation.

While the astrometric performance is improved by downweighting the undiffer-
enced measurements, we find that the geolocation performance actually degrades
(Table 7). Initially counter-intuitive in light of the previous results, this can be ex-
plained by the fact that the mean errors in orientation angles for the pole of Bennu
are compensated in large part by similar, correlated errors in the absolute inertial
orientation of the OSIRIS-REx orbit plane. When upweighted, the camera and
altimetry undifferenced data will ‘drag’ the orbit plane into an orientation that is
consistent with the spin state (which will have larger spin state errors than when
downweighted). For the purpose of minimizing the geolocation errors, especially
important for executing the TAG maneuver and sampling, the landmark and direct
altimetry data will thus provide a stronger tie to the Bennu-fixed frame.

Different combinations of the four camera and altimetric data types during the
OSIRIS-REx mission will provide ways to leverage the scientific data and better
achieve both astrometric accuracy and navigation goals.

In the orbit determination process, instrument pointing biases and Bennu orien-
tation parameters are correlated, but the ability to use differenced and undiffer-
enced measurements provides a powerful way to separate them. The undifferenced
measurements are sensitive to absolute instrument pointing, while the differenced
measurements cannot recover absolute pointing, but simply give constraints on
the relative pointing differences. By downweighting the undifferenced measure-
ments, they will not significantly contribute to the orientation parameters, but



still allow good recovery of instrument pointing biases because they are sensitive
to them and because the differenced measurements are less sensitive. The differ-
enced measurement, by being relatively upweighted, will primarily determine the
Bennu orientation. The reason we may want to prevent the undifferenced mea-
surements from contributing to orientation is that the instrument pointing cannot
necessarily be recovered to sufficient absolute quality, and thus that these types
of measurements would necessarily degrade the orientation parameters referenced
to the inertial frame, because of the high correlation. This is also true but to a
lesser extent in the case of differenced measurements, so those provide the best
way of determining Bennu orientation in inertial space, for astrometry purposes.
Although this is clearly demonstrated for the camera measurement types by the
above results, we expect this to also be the case for the altimetric measurement
types.

5.6 Why Is It So Hard to Get Geolocation to Better Than a Meter?

The simulations presented above with both a large 1◦ wobble, and another con-
ducted with a quiet Bennu (Table 7), point to a final geolocation accuracy on the
order of one meter. In the case where no wobble is present, the orientation can
be recovered to slightly better than one meter, satisfying the orientation recovery
requirement to achieve the larger TAG requirement.

There are three reasons why this value of one meter appears to be a minimum, floor
value in the case of Bennu. These are outlined in the following sections.

5.6.1 Small periodic variations caused by off-diagonal moments of inertia

As shown in Section 3.4, there is a limit to how quiet Bennu can be. That is because
in practice, it will be nearly impossible to implement a perfectly principal axes
body-fixed frame. Because of the off-diagonal moments of inertia, the closest that
Bennu could come to a constant pole with a constant rotation rate translates to a
position error just under a meter at the equator (Table 2). Any simple analytical
model with four parameters (constant α and δ, W0 and Ẇ) will produce errors of
this magnitude in the best of circumstances. The variations in orientation that are
left unmodeled by the simple four parameter model can be picked up by adding
periodic terms for α, δ and W (two parameters in each angle, or six parameters
total). The unmodeled variations in orientations can also be addressed by using a
dynamic orientation model. Either approach comes with some drawbacks, which
when combined with other error sources make it difficult to achieve ultra-precise
results. The analytical periodic terms require prior information on the period of the
variations, and any error in the period will cause problems. However, this period
depends on the ratios of the moments of inertia, which are not perfectly known.
These ratios must be determined from the dynamic orientation approach, but they
are very non-linear parameters, requiring estimation from short arcs.
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Fig. 7 Errors in the three inertial orientation angles (α, δ, W) after analysis of the radio
tracking, altimetry, and image data, in our most comprehensive 1◦ wobble simulation cases.
Results with different weighting for the landmark data are shown: (a) downweighted landmark
data and (b) upweighted landmark data (close to noise level).The correlation between α and
W leads to both being biased on average (thin dashed lines). Past the data cut-off date, the
prediction performance degrades slowly. Downweighting the landmarks yields better average
orientation angles. However, the geolocation performance is actually better with upweighted
landmarks, thanks to orbit plane errors partially compensating the inertial pole position errors.

5.6.2 Observation noise and force model errors

This simulation did not consider random observation errors (noise), so the results
are necessarily optimistic. However, systematic errors are the largest contributor
to the error budget. Several systematic errors can be considered.

The errors in camera and altimeter instrument attitude are mostly recoverable by
estimating epoch-by-epoch attitude parameters (for altimetry one epoch is a 150-
second scan). The effect of these errors will be discussed below (Section 5.6.3).



The OLA attitude is also affected by short-wavelength errors. Each OLA scan
spans 150 seconds and contains many thousands of individual altimeter ranges.
During the 150 seconds of the scan, the attitude error oscillates about the mean
attitude error, which has an amplitude of about 30 arcseconds and is estimated
by 75s-period empirical (as above). The data were simulated without these short-
wavelength errors on top of the long-wavelength effect. Because of their short-
wavelength nature however, we can expect their average effect to be small and not
affect the orientation solution beyond degrading slightly the quality of the OLA
patch crossovers (e.g., noise on the constraints).

Errors in landmark coordinates may also induce systematic effects. We considered
such landmark errors in the simulation, and the simulated data were reduced using
landmark coordinates to which 1-m RMS position Gaussian errors were imposed.
However, if the errors are spatially correlated after stereo processing, additional
systematic effects may result.

Given the relatively large influence of solar radiation pressure on OSIRIS-REx in
Bennu’s weak gravity environment, errors in the force model, such as spacecraft
shape and panel reflectivities, can affect the spacecraft trajectory. The nature of
such errors (force model parameter bias) would naturally yield systematic errors.
In our simulation, we accounted for such effects by simulating the data with one
truth spacecraft model and performing the OD with another set with realistic
errors (Section 5.2).

Similarly, any error in the gravity field coefficients will produce systematic errors
and biases in the reconstructed trajectory. Here again, following the ODTT3 sim-
ulation, we simulated the data with the truth gravity field (to degree and order
16) but the OD analysis was performed with large errors in the gravity coeffi-
cients.

To better understand the contribution of these systematics to geolocation error,
we reran the ‘quiet Bennu’ full simulation (Section 5.4), but with no instrument
pointing errors and no adjustment of any instrument pointing parameters. During
the 3-day solution period, the global geolocation errors are ∼ 40 cm RMS (88 cm
maximum), while over the 1.5-day prediction period, the errors increase slightly to
∼50-60 cm RMS (92 cm maximum). While smaller because of the reduced number
of errors and adjustable parameters, these numbers are only slightly reduced, which
shows that systematic errors have the most impact on geolocation error.

5.6.3 Estimation of camera and altimeter attitude parameters

The simulations described in Section 5.3 showed that it is possible and almost
certainly necessary in order to estimate orientation accurately to adjust three
attitude parameters (roll, pitch and yaw) for each landmark epoch and two attitude
parameters (roll and pitch) for each 150-second altimeter scan. The estimation of
these attitude parameters does slightly degrade the orientation solution and the
related geolocation. We performed a small simulation in the ‘quiet’ Bennu case
to determine how well the orientation parameters could be recovered from the
simulated data. This recovery test had no errors on the data or on any of the
modeled parameters. The orientation parameters were set at their truth values



and allowed to adjust, along with the satellite state parameters. The resulting
geolocation errors after adjustment are small, around 10 cm RMS and always
below 20 cm during the reconstruction period. In the 1.5 day prediction period, the
geolocation does not degrade substantially (∼ 10 cm RMS, and 23 cm maximum).
This means that when no systematic errors are present, the geolocation errors are
much smaller than the TAG requirement. Systematic errors in orientation, gravity,
and force models are the most detrimental to the geolocation accuracy.

6 Summary and Conclusions

This simulation effort was designed to assess the implications of a wobble at Bennu
for the OSIRIS-REx mission. We showed how a wobble would appear and affect
the TAG accuracy in particular. We found that if the a priori off-diagonal moments
of Bennu are order of magnitude correct, the wobble solution is relatively insen-
sitive to those off-diagonal moment errors. During analysis, it may be necessary
to estimate the Ixx, Iyy, and Izz moments, with constraints given the orienta-
tion is only sensitive to their ratio. Because these moment parameters are highly
non-linear, arc lengths are best kept to 3 days or shorter. The estimation of epoch-
by-epoch instrument pointing error parameters is possible when obtaining Bennu
orientation solutions, but such parameters must be estimated simultaneously with
orientation parameters to prevent large evaluation biases. The altimetry data are
very helpful in separating orbit, instrument pointing errors, and Bennu orienta-
tion parameters. The combined use of differenced and undifferenced measurement
types for both image and camera is also important to estimate the orientation
parameters while needing to adjust the pointing of the instruments. The undiffer-
enced data (image landmark and direct altimetry) are most sensitive to absolute
instrument pointing. The direct altimetry data (not the crossovers) need to be
greatly down-weighted due to the sheer number of range observations (compared
to other available data types) and because these range observations are sensitive
to short-wavelength topography not necessarily captured in the available shape
model. The differenced measurements (camera and altimeter crossovers) are es-
pecially useful to estimate orientation. They benefit from longer arc durations,
because the number of overlapping images or altimetry scans typically increase
quadratically with time. Too short an arc may also not contain any overlap. Our
simulation indicated that orientation reconstruction and prediction accuracies of
∼1 meter can be obtained when using those data types. We found that mean angu-
lar spin state errors are not necessarily detrimental to geolocation, thanks to their
correlation with spacecraft orbit errors. For geolocation quality, reducing the de-
partures from the mean is more important. Depending on the weighting strategy of
difference and undifferenced data, solutions can be tailored for either geolocation
performance or astrometric accuracy. Even in the case of a large 1-degree wobble,
the TAG accuracy requirement on geolocation error due to orientation knowledge
should not pose a significant difficulty.
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7 Appendix

7.1 Computing the planetary orientation parameters through dynamics

Clearly we need to be able to compute the orientation angles of Section 3.1 at
epoch t in the dynamic case. However, it is more natural to first compute related
quantities at t that are defined explicitly in the rotational equations of motion
rather than the angles and their rates. This essentially involves the numerical
integration of the body-fixed axes in the J2000 frame. This in turn involves the
numerical integration of the angular velocities about each body-fixed axis. From
the axes we may compute the orientation angles at any time. We may compute
the initial state of the axes from the initial orientation angles.

With α the right ascension and δ the declination, the rotation from the body-fixed
frame to the J2000 frame is given by

R =

−SαCW − CαSδSW SαSW − CαSδCW CαCδ
CαCW − SαSδSW −CαSW − SαSδCW SαCδ

CδSW CδCW Sδ

 , (5)

where C[·] and S[·] denote cos (·) and sin (·), respectively, of an angular argument. If
the cross-product between two generic vectors u and v is expressed as u×v = Euv,
where

Eu =

 0 −uz uy
uz 0 −ux
−uy ux 0

 , (6)

is a traceless, skew-symmetric matrix and u = [ux uy uz]
T, then this rotation is

a function of time and can be interpreted in one of two ways: (i) its orthogonal
columns define the body-fixed axes of the rigid object in the J2000 frame such
that the rate of change of this rotation is given by

Ṙ(t) = Eω̃(t)R(t), (7)

where ω̃(t) is the angular velocity of the object in the J2000 frame, or (ii) its
orthogonal rows define the J2000 axes in the body-fixed frame of the rigid object
such that the rate of change is given by

ṘT(t) = ET
ω(t)RT(t), (8)

where ω(t) is the angular velocity of the object in the body-fixed frame. Equation 8
leads to the following relationship

ω(t) =

CδSW −CW 0
CδCW SW 0
Sδ 0 1

 α̇(t)

δ̇(t)

Ẇ(t)

 , (9)



The Euler equations of motion for a rigid body with one point fixed [13] relate
this angular velocity to its angular acceleration in the body-fixed frame under the
affects of an applied torque, τ̃ (t), in the J2000 frame (here considered to be due
only to the sun) such that

ω̇(t) = I−1
c

[
RT(t)τ̃ (t) − ω(t) × Icω(t)

]
, (10)

where Ic is the moment of inertia matrix in the body-fixed cartesian frame. Equa-
tions 8 and 10 are the differential equations that we numerically integrate. Al-
though equation 8 is of primary interest, it cannot be integrated independently
from equation 10. Furthermore, the numerical integration of equation 10 provides
the vector corresponding to the instantaneous spin axis. We may compute the ini-
tial conditions of the spin axis, ω(t), from the initial orientation angles and their
rates using equation 9.

If we define ρ(t) = vec
(
RT(t)

)
, where the vec (·) operator stacks the columns

of its matrix argument, then together, equations 8 and 10 and initial conditions
describe the time evolution of 12 variables, i.e, the 3 elements of ω(t) and the 9
elements of ρ(t), and can be represented by the augmented system

ζ̇(t) = f(t, ζ(t), s), ζ(t0) = ζ0 (11)

where

ζ(t) =

(
ω(t)
ρ(t)

)
, (12)

and s is a vector of length 6 containing the upper-triangular elements of the sym-
metric matrix Ic, i.e., (Ixx, Iyy, Izz, Ixy, Ixz, Iyz). Thus, equation 11 may be inte-
grated from an initial epoch t0 to time t using equations 5 and 9 as a link between
R(t), ω(t), and the orientation angles and their rates.

In the case where RT(t)= [ex(t) ey(t) ez(t)] represents the J2000 axes (ex, ey, ez)
in the principal axis frame of the body, then Ic is diagonalized and equation 11
can be written in the more familiar form

ω̇x(t)
ω̇y(t)
ω̇z(t)
ėx(t)
ėy(t)
ėz(t)

 =


[τx(t) − (Izz − Iyy)ωy(t)ωz(t)] /Ixx
[τy(t) − (Ixx − Izz)ωx(t)ωz(t)] /Iyy
[τz(t) − (Iyy − Ixx)ωx(t)ωy(t)] /Izz

−ω(t) × ex(t)
−ω(t) × ey(t)
−ω(t) × ez(t)

 , (13)

where Ixx, Iyy, and Izz are the diagonal elements of Ic and τx, τy, and τz are now
the torques in the principal axis frame.

When working in the principal-axes frame, in the special case when Izz ≥ Ixx =
Iyy and the torque is negligible, equation 13 becomes ω̇x(t)

ω̇y(t)
ω̇z(t)

 =

−βωy(t)ωz(t)
βωx(t)ωz(t)

0

 , (14)



where β = (Izz−Ixx)
Ixx

, from which it is clear that ωz(t) is a constant, say ωz0. This
leads to (

ω̇x(t)
ω̇y(t)

)
=

(
0 −βωz0

βωz0 0

)(
ωx(t)
ωy(t)

)
. (15)

The solution isωx(t)
ωy(t)
ωz(t)

 =

 cos(βωz0t) − sin(βωz0t) 0
sin(βωz0t) cos(βωz0t) 0

0 0 1

ωx(0)
ωy(0)
ωz(0)

 , (16)

and as a result T = 2πβ−1ω−1
z0 is the period of the wobble.

7.2 Estimating the planetary orientation parameters and moments of inertia in
the dynamic case

The rotational dynamical equations discussed in the previous section have a di-
rect parallel with the orbital dynamical equations used in software like GEODYN.
The orbital dynamical differential equations have associated variational differen-
tial equations. The orbital variational equations are derived by differentiating the
orbital dynamical equations by each force model parameter (including the initial
states). They yield partial derivatives of the orbital state at any time with respect
to the initial state and also with respect to force model parameters, e.g., gravi-
tational coefficients. Likewise, the rotational dynamical equations have associated
variational equations yielding partial derivatives of the orientation angles at any
time with respect to the initial angular state (including angular rates) and also
with respect to the other force model parameters, e.g., the moments of inertia. As
discussed in Sections 3.2 and 4.2.2, this double set of variational equations needs
to be linked in order to include the orientation and moment of inertia parameters
as force parameters when considering tracking measurements of the OSIRIX-REx
spacecraft.

As with the computations in the previous section, we cast the rotational variational
equations in terms of R(t) and ω(t), or ζ(t), and not directly in terms of angles.
Thus, from equation 11, the partial derivative of ζ(t) with respect to ζ0 (the initial
rotational state) at time t, denoted as Φ(t), satisfies

Φ̇(t) =
∂f

∂ζ
(t)Φ(t), Φ(t0) = I, (17)

where I is a 12 × 12 identity matrix. Likewise, the partial derivative of ζ(t) with
respect to s (the independent moments of inertia) at time t, denoted as Ψ(t),
satisfies

Ψ̇(t) =
∂f

∂ζ
(t)Ψ(t) +

∂f

∂s
(t), Ψ(t0) = 0, (18)

where 0 is a 12 × 6 zero matrix. Note that equations 17 and 18 differ in two
aspects: the initial conditions and the use of explicit partial derivatives in the
latter. Equations 11, 17, and 18 can be integrated together to yield ζ(t) and its
changes with respect to ζ0 and s and can be chained with partial derivatives



based on equations 5 and 9 to provide partial derivatives of ζ0 with respect to the
orientation angles and their rates at the initial time t0.

Finally, it should be mentioned that Bennu is located in a low-torque region of
space such that τ̃ (t) is likely to be very small or negligible. In this case, equation 10
becomes

ω̇(t) = −I−1
c [ω(t) × Icω(t)] , (19)

which means that ω̇(t) is invariant to a scale factor on Ic. Thus, any attempt to in-
dependently estimate all elements of s will fail. In that case, additional constraints
must be placed on s, such as fixing the value of one of the elements of s and solv-
ing for the remainder, or fixing I2xx + I2yy + I2zz to a given value, as suggested in
Section 5.1.
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